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Power systems problems involve physics, 
hard constraints, and decision-making
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Figure adapted from: US Congressional Budget Office

Physics: Power 
flows along lines

Hard constraints: 
Equipment constraints

Decision-making: Given (uncertain) demand, 
how do we schedule supply?

Hard constraints: 
Stability constraints

Trad. optimization & control
• Satisfies (many) constraints
• Struggles with speed / scale

Machine learning (ML)
• Fast and scalable
• Struggles with constraints
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Implicit layers in deep learning

Toolkit for developing deep learning methods that incorporate knowledge of 
physics, hard constraints, or downstream decision-making procedures
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Model Objective 

Implicit 
layer(s)

Implicit 
function(s)
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robustness for N-k SCOPF
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Deep learning is differentiable function composition

Model 
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- Neural network ℎ!	= composition of nonlinear, parameterized functions (layers)
- Update parameters '	to minimize loss ℓ using gradients from backpropagation
- All components (layers and loss) must be differentiable

Deep learning is differentiable function composition
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Backpropagation and gradient descent (one layer)
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Explicit vs. implicit layer

Forward pass:

Backward pass:

Explicit layer

, = .(%, ')

[e.g., % = '($!) + $")]

d,⋆
d% = d.(%, ')

d%

Implicit layer

Find , such that 
1 ,, %, ' = 0

[e.g., power flow]

Find ⁄d,⋆ d%  such that 
d1 ,⋆, %, '

d% = 0

by using implicit function 
theorem at a solution point

dℓ
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d'⋆
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See also: Zico Kolter, David Duvenaud, and Matt Johnson. “Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models, and Beyond.” Tutorial at NeurIPS 2020. https://implicit-layers-tutorial.org/
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Brandon Amos and J. Zico Kolter. “OptNet: Differentiable optimization as a layer in neural networks.” ICML 2017.
Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." NeurIPS 2017.

QP layer (output #, all else are inputs/params)

minimize
!

	 ½	#"+# + -"#
subject	to	 5# = 7

	 8# ≤ ℎ	

Selected KKT optimality conditions 

+#⋆ + - + 5";⋆ + 8"<⋆ = 0
5#⋆ − 7 = 0

diag <⋆ 8#⋆ − ℎ = 0

Step 1: Apply implicit function theorem to the KKT conditions

* +& ,&
diag 0⋆ + diag(+'⋆ − ℎ) 0

, 0 0
	
d'
d0
dν

= −
d*'⋆ + d7 + d+&0⋆ + d,&8⋆
diag 0⋆ d+'⋆ 	− diag 0⋆ dℎ

d,'⋆ − d9

Generalized Jacobian of KKT conditions Desired gradients Gradients of problem parameters

Step 2: Use “Jacobian-vector trick” for efficient backpropagation

Insight: Apply the implicit function theorem to the KKT optimality conditions

Example: Differentiable quadratic programming layer
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Insight: Apply implicit function theorem to equilibrium or optimality conditions
(and use computational tricks to efficiently compute dℓ/d$ directly)

Powerful toolkit for incorporating important 
structure into deep learning methods

Many types of implicit layers
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via deep RL
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Feasible optimization 
proxies

Bonus: Adversarial 
robustness for N-k SCOPF

Talk outline
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Overview: Provably robust control via RL

Motivation: Need for well-performing control methods that also 
guarantee enforcement of hard constraints

13

Approach: Use implicit layers in deep 
reinforcement learning (RL) to guarantee 
enforcement of hard constraints

Settings:
- Asymptotic stability in power grids

- Realistic-scale building control
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Deep reinforcement learning vs. robust control

Deep RL Robust control

Pro: Expressive, well-performing policies
Con: Potential (catastrophic) failures

Can we improve performance while still guaranteeing stability?

Pro: Provable stability guarantees
Con: Simple policies (e.g., linear)

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural 
network policies." International Conference on Learning Representations (ICLR) 2021.
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Deep learning-based policy with provable robustness guarantees (even for a 
randomly initialized neural network), trainable using reinforcement learning
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Differentiable projection onto stabilizing actions
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Given the following (from robust control): 
- Uncertainty model: e.g., '̇ * ∈ ,' * + ./ * + 01 * 	s. t. ||1 * ||: ≤	 ||7' * + 8/ * ||:
- Lyapunov function 9 obtained via robust control synthesis
- Exponential stability criterion: -̇ ) . ≤ −1-() . ), ∀) ≠ 0
Find: For given ', set of actions satisfying exponential stability criterion even in worst case

: ' ≡ {	/: sup
;	∶ ; $= >?@AB $

9̇ ' ≤ −A9 ' }

⇒ {/: DC ' + 8/ : ≤ D: ' + DD ' E/}
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Convex (non-empty) set in 6 .
Note: B-dependence has been dropped for brevity

Insight: Find a set of actions that are guaranteed to satisfy relevant 
Lyapunov stability criteria at a given state, even under worst-case conditions

Finding a set of stabilizing actions (example)
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Illustrative results: Synthetic NLDI system
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Non-robust methods Our methodsRobust 
control

Unstable

Stable

Improved 
“average-case”
performance over 
robust baselines

Provably stable 
under “worst-case”
dynamics (unlike 
non-robust baselines)

Downside: Speed / 
computational cost

[lower is better]
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Goal: Control the HVAC supply water temperature to minimize energy use, while 
respecting equipment constraints and maintaining thermal comfort
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Intelligent Workplace
Margaret Morrison Hall, 4th Floor

(✤ Zhang & Lam, 2018) HVAC Schematic

Bingqing Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through 
Differentiable Projection for Energy Optimization." ACM International Conference on Future Energy Systems (ACM e-Energy) 2021.

Energy-efficient heating and cooling
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Differentiable projection onto feasible actions
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Summary: Provably robust control via RL

Motivation: Need for well-performing control methods that also 
guarantee enforcement of hard constraints
Settings:
-  Asymptotic stability in power grids
-  Realistic-scale building control

Insight: Project outputs of neural network onto a set of “safe” actions
- Obtain safe actions using domain knowledge
- Differentiable projection (implicit layer) = end-to-end training

Future directions: 
- Leveraging more modern control theoretic formulations
- Improving computational costs / scaling to larger systems

20
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Implicit layers in 
deep learning

Provably robust control 
via deep RL

Decision-cognizant 
prediction

Feasible optimization 
proxies

Bonus: Adversarial 
robustness for N-k SCOPF

Talk outline



PSCC 2024 Tutorial: Trustworthy AI for Power Systems3 June 2024 Name, Title

Motivation: Predictive methods operate within some larger decision-making 
process but do not often take this into account, potentially leading to critical mistakes.

22

Setting: Decision-cognizant electricity demand forecasting

Approach: Construct decision-cognizant model using implicit function(s) in objective

Overview: Decision-cognizant prediction
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Past demand,
weather, time

≡ %
Future demand
(w/ uncertainty)

≡ "ℎ!?

Usual goal: Minimize distance between predicted and actual quantities (e.g., demand)
	minimize! ℓ(", ℎ! % )

Generation 
schedule (e.g.)

≡ ,

Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." 
Conference on Neural Information Processing Systems (NeurIPS) 2017.

Decision-cognizant demand forecasting

Goal: Optimize for quality of generation schedule when we observe actual demands
	minimize! .C(",	,⋆ %; ' )
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Decision-cognizant model
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Decision-cognizant approach gives ~39% improvement in decision cost.

(ours)

D
ec
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n 
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st

(ours)

R
M

SE

[lower is better] [lower is better]

Decision-cognizant approach can dramatically 
improve generation scheduling outcomes
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Motivation: Predictive methods operate within some larger decision-making 
process but do not often take this into account, potentially leading to critical mistakes.

26

Setting: Electricity demand forecasting

Insight: Incorporate knowledge of downstream decision-making process into the loss 
function, using implicit layers (differentiable optimization). 

Future directions: 
- Incorporating larger / more realistic decision-making procedures
- Extension to additional settings (e.g., end-to-end modeling + control)
- Understanding tradeoffs between decision-cognizant vs. decision-agnostic models

Summary: Decision-cognizant prediction
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Implicit layers in 
deep learning

Provably robust control 
via deep RL

Bonus: Adversarial 
robustness for N-k SCOPF

Feasible optimization 
proxies

Decision-cognizant 
prediction

Talk outline
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Feasible optimization proxies

28

Goal: Provide fast, feasible approx. 
to AC optimal power flow (ACOPF)

Approach:

power 
demand

dispatch

Priya L. Donti*, David Rolnick*, and J. Zico Kolter. "DC3: A learning method for optimization with hard constraints.”
International Conference on Learning Representations (ICLR) 2021.
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10x faster 
than IPOPT

Comparable
objective value

Satisfies all constraints
(unlike baselines)

IPOPT

Baseline NN

Our approach

Future directions: 
- Larger scale trials (fitting on a GPU)
- Mixed-integer problems (e.g., unit commitment)
- Generalization over topologies (e.g., via GNNs)
- Combinations with frameworks like PDL [PH2023]

Objective value

3.81 + 0.00

—

3.82 + 0.00

Max equality 
violation

Mean equality 
violation

0.00 + 0.00 0.00 + 0.00

0.19 + 0.01 0.03 + 0.00

0.00 + 0.00 0.00 + 0.00

Time (s)

0.949 + 0.002
—

0.089  + 0.000

Approximating ACOPF: 57-bus test case

[PH2023] Seonho Park, Pascal Van Hentenryck. "Self-Supervised Primal-Dual Learning for Constrained Optimization." AAAI (2023).

Image source:  [PH2023]
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prediction

Bonus: Adversarial 
robustness for N-k SCOPF
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Adversarially robust deep learning

31

min
G

/
H,I∈J

max
K∈L

	Loss (" + 7, '; !)

Part I: Creating an adversarial example (or ensuring one does not exist) 

Part II: Training a robust classifier

Slide adapted from: Zico Kolter and Aleksander Madry. “Adversarial Robustness - Theory and Practice.” Tutorial at NeurIPS 2018. adversarial-ml-tutorial.org.
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Adversarially robust deep learning: Pick neural network 
parameters to bound the cost of any worst-case perturbation

- Required scalable gradient-based optimization methods

Security-constrained OPF: Pick dispatch to bound the cost of 
worst-case contingencies

- Leverage similar scalable gradient-based optimization methods?

32

Drawing inspiration from adversarially robust DL
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Adversarial robustness for N-k SCOPF

N-k security-constrained optimal power flow (SCOPF): Schedule power to be 
robust to potentially k simultaneous generator or line failures (contingencies)

33

Priya L. Donti*, Aayushya Agarwal*, Neeraj Vijay Bedmutha, Larry Pileggi, and J. Zico Kolter. "Adversarially Robust Learning for 
Security-Constrained Optimal Power Flow." Conference on Neural Information Processing Systems (NeurIPS) 2021.

Step 0: Formulate as bilevel (attacker-
defender) opt. over dispatch and continuous 
outer relaxation of contingencies

Step 1 (“attack stage”): Find worst-case 
contingency via a few steps of projected 
gradient ascent (with implicit diff.)

Step 2 (“defense stage”): Update dispatch 
to improve robustness against worst case 
contingency (e.g., via projected gradient 
descent or efficient Gauss-Seidel approach)
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3-4x improvement over OPF for N-2/N-3 SCOPF, in only 21 minutes on a laptop

Note: Comparable N-1 SCOPF performance, and superior N-2 and N-3 
performance, to ARPA-E GO Competition baselines

See also: Results on stochastic OPF for 11,615-bus system (PSCC 2022)

* our approach

Illustrative results (4622-bus system)
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Implicit layers in 
deep learning

Provably robust control 
via deep RL

Decision-cognizant 
prediction

Feasible optimization 
proxies

Bonus: Adversarial 
robustness for N-k SCOPF

Talk outline
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Enablers for next-gen. optimization & control

36

More openness in data, beyond only bilateral agreements and limited access
- Can include sharing of synthetic data

Simulators and test beds, with realistic/diverse scenarios and easy-to-use interfaces 
- Includes digital twins, but also simpler frameworks (e.g., Grid2Op)
- Need for progression pathways from basic to advanced simulators/test beds

Evaluation metrics / benchmarks: What does it mean for a method to succeed (or fail)?

Open-source software, enabling integration and evaluation of new methods

Internal research capacity with external exchange: Enables translation of ideas without 
sharing difficult-to-share information across organizational boundaries

Note: None of these enablers are machine learning-specific! 
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Implicit layers in deep learning: 
powerful paradigm for bridging ML 
with power systems specifications

Going from theory to practice 
requires deep interdisciplinary 
collaboration and research-to-
deployment infrastructure

Reach out if you’d like to chat, and 
check out the Climate Change AI 
network (www.climatechange.ai)

Priya L. Donti: donti@mit.edu

Closing thoughts

http://www.climatechange.ai/
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Backup slides

38
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See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.

ML for power systems: Recurring themes
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Distilling raw data into insights (GHG emissions, solar panels, vegetation)

40

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.

Image source: Yu, Wang, Majumdar, Rajagopal (2018)

ML for power systems: Recurring themes
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Image source: Open Climate Fix

ML for power systems: Recurring themes

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.

Distilling raw data into insights (GHG emissions, solar panels, vegetation)
Forecasting (renewable energy, marginal/average emissions, prices)
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Image source: L2RPN Challenge

ML for power systems: Recurring themes

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.

Distilling raw data into insights (GHG emissions, solar panels, vegetation)
Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)
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Image source: EPRI Journal (2019)

ML for power systems: Recurring themes

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.

Distilling raw data into insights (GHG emissions, solar panels, vegetation)
Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance 
(resilient infrastructure, methane leaks)

https://eprijournal.com/drones-and-ai-converge-for-power-delivery-inspections/
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Image source: Sendek et al. (2020)

ML for power systems: Recurring themes

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.

Distilling raw data into insights (GHG emissions, solar panels, vegetation)
Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance 
(resilient infrastructure, methane leaks)

Accelerated science 
(batteries, solar, electrofuels, fusion)
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Distilling raw data into insights (GHG emissions, solar panels, vegetation)
Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance 
(resilient infrastructure, methane leaks)

Accelerated science 
(batteries, solar, electrofuels, fusion)

Data management
(data matching/fusion, data generation)

45

Image source: Chen, Wang, Kirschen, Zhang (2018) 

ML for power systems: Recurring themes

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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Tackling Climate Change with Machine Learning

David Rolnick1∗, Priya L. Donti2, Lynn H. Kaack3, Kelly Kochanski4, Alexandre Lacoste5,
Kris Sankaran6,7, Andrew Slavin Ross8, Nikola Milojevic-Dupont9,10, Natasha Jaques11,
Anna Waldman-Brown11, Alexandra Luccioni6,7, Tegan Maharaj6,7, Evan D. Sherwin2,

S. Karthik Mukkavilli6,7, Konrad P. Kording1, Carla Gomes12, Andrew Y. Ng13,
Demis Hassabis14, John C. Platt15, Felix Creutzig9,10, Jennifer Chayes16, Yoshua Bengio6,7

1University of Pennsylvania, 2Carnegie Mellon University, 3ETH Zürich, 4University of Colorado Boulder,
5Element AI, 6Mila, 7Université de Montréal, 8Harvard University,

9Mercator Research Institute on Global Commons and Climate Change, 10Technische Universität Berlin,
11Massachusetts Institute of Technology, 12Cornell University, 13Stanford University,

14DeepMind, 15Google AI, 16Microsoft Research

Abstract

Climate change is one of the greatest challenges facing humanity, and we, as machine learning ex-
perts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in
reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids
to disaster management, we identify high impact problems where existing gaps can be filled by machine
learning, in collaboration with other fields. Our recommendations encompass exciting research ques-
tions as well as promising business opportunities. We call on the machine learning community to join
the global effort against climate change.

Introduction

The effects of climate change are increasingly visible.1 Storms, droughts, fires, and flooding have become
stronger and more frequent [3]. Global ecosystems are changing, including the natural resources and agri-
culture on which humanity depends. The 2018 intergovernmental report on climate change estimated that
the world will face catastrophic consequences unless global greenhouse gas emissions are eliminated within
thirty years [4]. Yet year after year, these emissions rise.

Addressing climate change involves mitigation (reducing emissions) and adaptation (preparing for un-
avoidable consequences). Both are multifaceted issues. Mitigation of greenhouse gas (GHG) emissions re-
quires changes to electricity systems, transportation, buildings, industry, and land use. Adaptation requires
climate modeling, risk prediction, and planning for resilience and disaster management. Such a diversity of
problems can be seen as an opportunity: there are many ways to have an impact.

In recent years, machine learning (ML) has been recognized as a broadly powerful tool for technological
progress. Despite the growth of movements applying ML and AI to problems of societal and global good,2

∗D.R. conceived and edited this work, with P.L.D., L.H.K., and K.K. Authors P.L.D., L.H.K., K.K., A.L., K.S., A.S.R., N.M-D.,
N.J., A.W-B., A.L., T.M., and E.D.S. researched and wrote individual sections. S.K.M., K.P.K., C.G., A.Y.N., D.H., J.C.P., F.C.,
J.C., and Y.B. contributed expert advice. Correspondence to drolnick@seas.upenn.edu.

1For a layman’s introduction to the topic of climate change, see [1, 2].
2See the AI for social good movement (e.g. [5, 6]), ML for the developing world [7], and the computational sustainability

1
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