PSCC 2024 Tutorial

Trustworthy Al for Power Systems

Implicit layers: A toolkit
for Al in power systems

Priya L. Donti

Assistant Professor

Dept. Electrical Engineering & Computer Science
Laboratory for Information & Decision Systems
Massachusetts Institute of Technology (MIT)



PSCC2024

Power systems problems involve physics,
hard constraints, and decision-making

Trad. optimization & control
Satisfies (many) constraints
Struggles with speed / scale

Decision-making: Given (uncertain) demand,
how do we schedule supply?
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Hard constraints: L
Equipment constraints

A

Physics: Power = 4
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Hard constraints: Machine learning (ML)
Stability constraints Fast and scalable
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Struggles with constraints

Figure adapted from: US Congressional Budget Office
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Implicit layers in deep learning

Toolkit for developing deep learning methods that incorporate knowledge of
physics, hard constraints, or downstream decision-making procedures

Model Objective

Implicit
function(s)

Implicit
layer(s)
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Provably robust control Decision-cognizant Feasible optimization
via deep RL prediction proxies

Bonus: Adversarial
robustness for N-k SCOPF

3 June 2024 PSCC 2024 Tutorial: Trustworthy Al for Power Systems



PSCC2024

Talk outline
Implicit layers in
deep learning
Provably robust control Decision-cognizant Feasible optimization
via deep RL prediction proxies

Bonus: Adversarial
robustness for N-k SCOPF

3 June 2024 PSCC 2024 Tutorial: Trustworthy Al for Power Systems



PSCC2024

Deep learning is differentiable function composition

Model Loss, e.g.
— h, —Vh (v, ho ()
: / \ e(x) “Score” for
Inputs Functional Model Outputs quali’gloo? output

form of model parameters
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Deep learning is differentiable function composition

- Neural network hy = composition of nonlinear, parameterized functions (/ayers)

- Update parameters ¢ to minimize loss ¢ using gradients from backpropagation

- All components (layers and loss) must be differentiable

3 June 2024

PSCC 2024 Tutorial: Trustworthy Al for Power Systems

Implicit layer

—

hg ()

Loss, e.q.,
f(y, h@ (X))
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Backpropagation and gradient descent (one layer)

0
Forward pass: Layer - /(2)
X Z
A d¢  d¢ dz”
Bktﬂ @ ~ dz* do
Backward pass: ,3?--!0-[3?39-?-!3?--‘ via chain rule
“df df df d¢ df dz”
dz* "do’ dx dr  dz* dx
_ df
Update (gradient descent): 00 —a—

do
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Explicit vs. implicit layer

Explicit layer

PSCC2024

Implicit layer

Forward pass:

z=f(x0)

Wp
x z [e.g.,z=0(0Tx + 6,)]

Find z such that
g(z,x,0)=0

[e.g., power flow]

Backward pass:
warep dz*  df(x,0)

df  de dz* df  de dz* dr dr
do  dz* do dr  dz* dx

Find dz”*/dx such that
dg(z™, x,0)
=0
dx

by using implicit function
theorem at a solution point

See also: Zico Kolter, David Duvenaud, and Matt Johnson. “Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models, and Beyond.” Tutorial at NeurlPS 2020. https://implicit-layers-tutorial.org/
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Example: Differentiable quadratic programming layer

Insight: Apply the implicit function theorem to the KKT optimality conditions

QP layer (output z, all else are inputs/params) Selected KKT optimality conditions
minimize % z'Qz+ q'z Qz*+q+ ATV +GT2* =0
Z *
subjectto Az =b Az —b =0
Gz<h diag(A*)(Gz*—h) =0

Step 1: Apply implicit function theorem to the KKT conditions

Q GT AT1 [dz dQz* + dg + dGTA* + dATv*
diag(1*)G diag(Gz*—h) O dl] = — | diag(1*)dGz* — diag(A1*)dh
A 0 0l Lldv dAz* — db
Generalized Jacobian of KKT conditions  Desired gradients Gradients of problem parameters

Step 2: Use “Jacobian-vector trick” for efficient backpropagation

Brandon Amos and J. Zico Kolter. “OptNet: Differentiable optimization as a layer in neural networks.” ICML 2017.
Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." NeurlPS 2017.



Many types of implicit layers

Insight: Apply implicit function theorem to equilibrium or optimality conditions
(and use computational tricks to efficiently compute d¢/dé directly)

OptNet: Differentiable Optimization as a Layer in Neural Networks Task-based End-to-end Model Learning

in Stochastic Optimization

Powerful toolkit for incorporating important  (.ximization

structure into deep learning methods

End-to-End Differenuapie roysics pirrerentiapie Lonvex upumizatuon Layers
for Learning and Control

Neural Ordinary Differential Equations

Filipe de A. Belbute-Peres Kevin A. Smith

School of Computer Science Brain and Cognitive Sciences
Carnegie Mellon University Massachusetts Institute of Technology
Pittsburgh, PA 15213 Cambridge, MA 02139 . . .
filiped@cs.cmu.edu k2smithemit . edu Ricky T. Q. Chen*, Yulia Rubanova¥*, Jesse Bettencourt*, David Duvenaud

University of Toronto, Vector Institute

{rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu
YW alcansyr D Alase Y ardhs s e D TMheense Rl oy .
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Overview: Provably robust control via RL

gi} Motivation: Need for well-performing control methods that also
guarantee enforcement of hard constraints

Approach: Use implicit layers in deep
reinforcement learning (RL) to guarantee M‘,’,je'm ho ()
enforcement of hard constraints

Control action

Settings:
- Asymptotic stability in power grids

- Realistic-scale building control
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Deep reinforcement learning vs. robust control

Uncertainty
Disturbance

Ref T~ e +
Controller § Plant ()

Filter Sensor

Computer Plant Noise

|
OO0
\
elele)
|

Deep RL Robust control
Pro: Expressive, well-performing policies Pro: Provable stability guarantees
Con: Potential (catastrophic) failures Con: Simple policies (e.g., linear)

Can we improve performance while still guaranteeing stability?

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural
network policies." International Conference on Learning Representations (ICLR) 2021.
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Differentiable projection onto stabilizing actions

Deep learning-based policy with provable robustness guarantees (even for a
randomly initialized neural network), trainable using reinforcement learning

g N i Model
° (*) i /’1
= B
ackpropagate
o B Nt ai
o — | R
(@) |
pr—>| 5 s> Reward
u 7 o u
Nominal a | Action
action E i
I
I
|



Finding a set of stabilizing actions (example)

Insight: Find a set of actions that are guaranteed to satisfy relevant
Lyapunov stability criteria at a given state, even under worst-case conditions

Given the following (from robust control):

- Uncertainty model: e.qg., €A + Bu(t) + Gw(t) s.t.||w(t)]|], < ||IC + Du(t)]|,
- Lyapunov function V obtained via robust control synthesis

- Exponential stability criterion: V(x(1)) < —aV (x(1)),Vx # 0

Find: For given x, set of actions satisfying exponential stability criterion even in worst case

C(x) = {u: sup V(x)) < —aV(x)} =N =N (o
(w=||w||2s||c +Dull, ) O/ @ g
= {u: ||k () + Dull, < ko (%) + k3 ()Tu} Q**Q—uV §E-:—u>
C _ t t . t N:Crgionnal §' Action
onvex (non-empty) setin u(t) Q Q £

Note: t-dependence has been dropped for brevity
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lllustrative results: Synthetic NLDI system

Robust

|

' Our methods
control |

|

Non-robust methods

[lower is better]

Robust Robust
MBP* PPO*

Robust
LQR

LQR MBP PPO

10000 |- == 'i: = ilOrdin?ry m Adversarial !‘r:\'/);?a\\’geg-case”
™ Unstable — performance over
© 1000 r : : robust baselines
3 | ' - Stable
éﬂ | | v Provably stable
o 100 ¢ under “worst-case”
S | | dynamics (unlike
S | ; non-robust baselines)
—l 10 r | |

i . Downside: Speed /
1 computational cost
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Energy-efficient heating and cooling

Goal: Control the HVAC supply water temperature to minimize energy use, while
respecting equipment constraints and maintaining thermal comfort

(Testbed )
JEoLUCU > Controller
X / J

U: SW Temp.

X

setpoint

I : Hot Water from Plant

\ Constant Flow

Hot Water to Plant
Intelligent Workplace - ;_’

Margaret Morrison Hall, 4t Floor _
(% Zhang & Lam, 2018) HVAC Schematic

Heat Exchanger

Bingging Chen*, Priya L. Donti*, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through
Differentiable Projection for Energy Optimization." ACM International Conference on Future Energy Systems (ACM e-Energy) 2021.
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Differentiable projection onto feasible actions

' Model

~S

u

|
|
|
System state : Nominal
| action
|
|
|
|

Projection onto
feasible actions
0
D
=
Q)

o
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Summary: Provably robust control via RL

gﬁ Motivation: Need for well-performing control methods that also
guarantee enforcement of hard constraints

Settings:
Model

- Asymptotic stability in power grids h m he (%)
. g o g Control action
- Realistic-scale building control

Insight: Project outputs of neural network onto a set of “safe” actions
- Obtain safe actions using domain knowledge

- Differentiable projection (implicit layer) = end-to-end training
Future directions:

- Leveraging more modern control theoretic formulations
- Improving computational costs / scaling to larger systems
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Overview: Decision-cognizant prediction

Q Motivation: Predictive methods operate within some larger decision-making
process but do not often take this into account, potentially leading to critical mistakes.

Approach: Construct decision-cognizant model using implicit function(s) in objective

. M ho () I 2 0)

Historical data Prediction Decision

~
~
T——— —_——

Setting: Decision-cognizant electricity demand forecasting
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Decision-cognizant demand forecasting

|

i Generation .
1 schedule (e.g.)
= Z

Past demand, RRREEES Future demand ’
weather, time > (w/ uncertainty)

Goal: Optimize for quality of generation schedule when we observe actual demands
miniemize fe(v, z°(x; 0))

Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization."
Conference on Neural Information Processing Systems (NeurlIPS) 2017.
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Decision-cognizant model

Loss function

ion

t

1
OO0
v
v
OO0
P lt

bec ) Z)

- |
X Yy oo -
Predicted | % Generation
demand | schedule
|
|
|

—_—_———— e e e e e e e e e —— — ]
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Decision-cognizant approach can dramatically

iImprove generation scheduling outcomes

RMSE

[lower is better] [lower is better]

Hour of Day
- RMSE Net —}— Task Net (ours) = RMSE Net =t Task Net (ours)

Hour of Day

Decision-cognizant approach gives ~39% improvement in decision cost.
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Summary: Decision-cognizant prediction

Motivation: Predictive methods operate within some larger decision-making
process but do not often take this into account, potentially leading to critical mistakes.

Setting: Electricity demand forecasting Moael ho )sz*(_ . 0)
Prediction ec/|S|on

v ~
~
~

Insight: Incorporate knowledge of downstream decision-making process |nto the loss
function, using implicit layers (differentiable optimization).

Future directions:

- Incorporating larger / more realistic decision-making procedures

- Extension to additional settings (e.g., end-to-end modeling + control)

- Understanding tradeoffs between decision-cognizant vs. decision-agnostic models
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via deep RL prediction proxies

Bonus: Adversarial
robustness for N-k SCOPF
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Feasible optimization proxies

| | 4 ACOPF N
Goal: Provide fast, feasible approx. mem) | minimize costs N
to AC optimal power flow (ACOPF) power | disoatch
demand subject to AC power flow ISpatc
_ device limits Y,
Approach:
=N =N — —
o (O oy [ .
’q;, Ea g _5 | costs |
= — | + !
‘ Q > --- mlip> Q ‘ 8_8 ‘ 8§ ‘ | equality infeas. |
) ~ = + I
power dispatch 0% estimated | 3 6 | corrected | ; litv infeas. !
demand Q O ’ <& | fulstate | BC | fullstate '--ooo-onoon
N/ — \—— ———

Note: Learns directly from problem specification (no training labels)

Priya L. Donti*, David Rolnick*, and J. Zico Kolter. "DC3: A learning method for optimization with hard constraints.”
International Conference on Learning Representations (ICLR) 2021.
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Approximating ACOPF: 57-bus test case

Objective value | Max equality | Mean equality Time (s)
violation violation
IPOPT 3.81+0.00 0.00+0.00 0.00+0.00
Baseline NN — —
Our approach 3.82+0.00 0.00+0.00 0.00+0.00 0.089 +0.000
Future directions: Mby'e fx@()ym .
- Larger scale trials (fitting on a GPU) b ) =0 Y €0
- Mixed-integer problems (e.g., unit commitment) S e €™
) L . . .
Generalization over topologies (e.g., via GNNSs) N\ ﬂ’u‘ Dus Learing ’

- Combinations with frameworks like PDL [PH2023]

[PH2023] Seonho Park, Pascal Van Hentenryck. "Self-Supervised Primal-Dual Learning for Constrained Optimization." AAA/ (2023).

Image source: [PH2023]
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Provably robust control

3 June 2024

via deep RL
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Implicit layers in
deep learning

Decision-cognizant
prediction

Bonus: Adversarial
robustness for N-k SCOPF
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Feasible optimization
proxies
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Adversarially robust deep learning

“airliner”

Part Il: Training a robust classifier

( \

mln 2 I(rslean Loss(x +0,y;0)

X, VES | J
Y Y

Part I: Creating an adversarial example (or ensuring one does not exist)

Slide adapted from: Zico Kolter and Aleksander Madry. “Adversarial Robustness - Theory and Practice.” Tutorial at Neur/PS 2018. adversarial-ml-tutorial.org.
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Drawing inspiration from adversarially robust DL

Adversarially robust deep learning: Pick neural network
parameters to bound the cost of any worst-case perturbation

- Required scalable gradient-based optimization methods

Security-constrained OPF: Pick dispatch to bound the cost of
worst-case contingencies

- Leverage similar scalable gradient-based optimization methods?



Adversarial robustness for N-k SCOPF

N-k security-constrained optimal power flow (SCOPF): Schedule power to be
robust to potentially k simultaneous generator or line failures (contingencies)

DEFENSE ATTACK

(dispatch) (contingencies)

minimize || max
[ XEX }{ YyEUY

Base case 1 Contingenc
cost case cost

subjectto x €

y €

)

(

Base case grid and device constraints

(incl. nonlinear equality constraint)

\

J

\.

i Second-stage adjustments to power g

and voltage
(optimization problem)

J

Step 0: Formulate as bilevel (attacker-
defender) opt. over dispatch and continuous
outer relaxation of contingencies

Step 1 (“attack stage”): Find worst-case
contingency via a few steps of projected
gradient ascent (with implicit diff.)

Step 2 (“defense stage”): Update dispatch
to improve robustness against worst case
contingency (e.g., via projected gradient
descent or efficient Gauss-Seidel approach)

Priya L. Donti*, Aayushya Agarwal*, Neeraj Vijay Bedmutha, Larry Pileggi, and J. Zico Kolter. "Adversarially Robust Learning for
Security-Constrained Optimal Power Flow." Conference on Neural Information Processing Systems (NeurlPS) 2021.



lllustrative results (4622-bus system)

3-4x improvement over OPF for N-2/N-3 SCOPF, in only 21 minutes on a laptop

Contingency type N-1 N-2 N-3
Scenarios tested 6,133 359,712 428,730
OPF violations 59 10,572 4,086

CANOY violations* 36 3,580 1,122

* our approach

Note: Comparable N-1 SCOPF performance, and superior N-2 and N-3
performance, to ARPA-E GO Competition baselines

See also: Results on stochastic OPF for 11,615-bus system (PSCC 2022)
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Enablers for next-gen. optimization & control

More openness in data, beyond only bilateral agreements and limited access
- Can include sharing of synthetic data

Simulators and test beds, with realistic/diverse scenarios and easy-to-use interfaces
- Includes digital twins, but also simpler frameworks (e.g., Grid20p)
- Need for progression pathways from basic to advanced simulators/test beds

Evaluation metrics / benchmarks: What does it mean for a method to succeed (or fail)?
Open-source software, enabling integration and evaluation of new methods

Internal research capacity with external exchange: Enables translation of ideas without
sharing difficult-to-share information across organizational boundaries

Note: None of these enablers are machine learning-specific!



Closing thoughts

Implicit layers in deep learning:
powerful paradigm for bridging ML
with power systems specifications

Going from theory to practice
requires deep interdisciplinary
collaboration and research-to-
deployment infrastructure

Reach out if you'd like to chat, and
check out the Climate Change Al
network (www.climatechange.ai)

Implicit layers in
deep learning

Provably robust control Decision-cognizant Feasible optimization
via deep RL prediction proxies

Bonus: Adversarial
robustness for N-k SCOPF

Priya L. Donti: donti@mit.edu


http://www.climatechange.ai/
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Backup slides
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ML for power systems: Recurring themes

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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ML for power systems: Recurring themes

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

A B c D E .
- M POSITIVE ‘5 . : »1

= e,
m NEGATIVE NULL » .
. M POSITIVE E > E

Image source: Yu, Wang, Majumdar, Rajagopal (2018)

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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ML for power systems: Recurring themes

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)

22 Une 2019
~09:15 UTC

Image source: Open Climate Fix

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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ML for power systems: Recurring themes

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)

Learning to Run a Power Network

2022
Image source: L2ZRPN Challenge

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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ML for power systems: Recurring themes

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)
Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance
(resilient infrastructure, methane leaks)

Image source: EPRI Journal (2019)

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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https://eprijournal.com/drones-and-ai-converge-for-power-delivery-inspections/

ML for power systems: Recurring themes

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)
Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance

e . E Anion
(resilient infrastructure, methane leaks) 5 g ke ©0
. 2 0@?, ’er,ZOUOf g 21
Accelerated science 2 ou,,,e%,,o:g,, o &
(batteries, solar, electrofuels, fusion) Ny o N
n 2.99) 5 58 oF
P —% >
% O <~ © _
S
w

lonic conductivity (ML model)

Image source: Sendek et al. (2020)

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.



ML for power systems: Recurring themes

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)
Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance

' Historical
(resilient infrastructure, methane leaks) | /\/t il Output
SPEEIEE & 2 5 g prediction
Accelerated science {"‘ L VN real/fake
(batterieS, SOIar, eIeCtrOfueIS, fUSion) 50 100150 200 % 750 200 250 : ] f
Generated
Noise input samples
Data management / —
: : : o' K b
(data matching/fusion, data generation) W ! U £ -

Image source: Chen Wang, Kirschen, Zhang (2018)

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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Tackling Climate Change with Machine Learning
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Forecasting supply
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