

PSCC 2024 Tutorial Trustworthy AI for Power Systems

Implicit layers: A toolkit for AI in power systems

Priya L. Donti

Assistant Professor Dept. Electrical Engineering & Computer Science Laboratory for Information & Decision Systems Massachusetts Institute of Technology (MIT)

Power systems problems involve physics, hard constraints, and decision-making

Trad. optimization & control

- Satisfies (many) constraints
- Struggles with speed / scale

Machine learning (ML)

- Fast and scalable
- Struggles with constraints

Figure adapted from: US Congressional Budget Office

PSCC2024

Implicit layers in deep learning

Toolkit for developing deep learning methods that incorporate knowledge of physics, hard constraints, or downstream decision-making procedures

Bonus: Adversarial robustness for N-k SCOPF

Bonus: Adversarial robustness for N-k SCOPF

Deep learning is differentiable function composition

PSCC2024

Deep learning is differentiable function composition

- Neural network h_{θ} = composition of nonlinear, parameterized functions (*layers*)
- Update parameters θ to minimize loss ℓ using gradients from *backpropagation*
- All components (layers and loss) must be differentiable

 $d\ell dz^{\star}$

Explicit vs. implicit layer

	Explicit layer	Implicit layer
Forward pass: Layer θ z $\ell(z)$	$z = f(x, \theta)$ [e.g., $z = \sigma(\theta^T x + \theta_0)$]	Find z such that $g(z, x, \theta) = 0$ [e.g., power flow]
Backward pass: $\frac{d\ell}{d\theta} = \frac{d\ell}{dz^{\star}} \frac{dz^{\star}}{d\theta} \qquad \frac{d\ell}{dx} = \frac{d\ell}{dz^{\star}} \frac{dz^{\star}}{dx}$	$\frac{\mathrm{d}z^{\star}}{\mathrm{d}x} = \frac{\mathrm{d}f(x,\theta)}{\mathrm{d}x}$	Find dz^*/dx such that $\frac{dg(z^*, x, \theta)}{dx} = 0$ by using implicit function theorem at a solution point

See also: Zico Kolter, David Duvenaud, and Matt Johnson. "Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models, and Beyond." Tutorial at NeurIPS 2020. https://implicit-layers-tutorial.org/

PSCC2024

Example: Differentiable quadratic programming layer

Insight: Apply the implicit function theorem to the KKT optimality conditions

QP layer (output *z*, all else are inputs/params)

 $\begin{array}{ll} \underset{z}{\text{minimize}} & \frac{1}{2} z^T Q z + q^T z \\ \text{subject to} & A z = b \\ & G z \leq h \end{array}$

Selected KKT optimality conditions

 $Qz^{\star} + q + A^{T}v^{\star} + G^{T}\lambda^{\star} = 0$ $Az^{\star} - b = 0$ $diag(\lambda^{\star})(Gz^{\star} - h) = 0$

Step 1: Apply implicit function theorem to the KKT conditions

Step 2: Use "Jacobian-vector trick" for efficient backpropagation

Brandon Amos and J. Zico Kolter. "OptNet: Differentiable optimization as a layer in neural networks." *ICML 2017.* Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." *NeurIPS 2017.*

Many types of implicit layers

Insight: Apply implicit function theorem to equilibrium or optimality conditions (and use computational tricks to efficiently compute $d\ell/d\theta$ directly)

Bonus: Adversarial robustness for N-k SCOPF

Overview: Provably robust control via RL

Motivation: Need for well-performing control methods that also guarantee enforcement of hard constraints

Approach: Use implicit layers in deep reinforcement learning (RL) to guarantee enforcement of hard constraints

Settings:

- Asymptotic stability in power grids
- Realistic-scale building control

Deep reinforcement learning vs. robust control

Pro: Expressive, well-performing policies **Con:** Potential (catastrophic) failures

Robust control

Pro: Provable stability guarantees **Con:** Simple policies (e.g., linear)

Can we improve performance while still guaranteeing stability?

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control guarantees within neural network policies." *International Conference on Learning Representations (ICLR) 2021.*

PSCC2024

Differentiable projection onto stabilizing actions

Deep learning-based policy with **provable robustness guarantees** (even for a randomly initialized neural network), trainable using reinforcement learning

Finding a set of stabilizing actions (example)

Insight: Find a set of actions that are guaranteed to satisfy relevant Lyapunov stability criteria at a given state, even under worst-case conditions

Given the following (from robust control):

- Uncertainty model: e.g., $\dot{x}(t) \in Ax(t) + Bu(t) + Gw(t)$ s.t. $||w(t)||_2 \le ||Cx(t) + Du(t)||_2$
- Lyapunov function V obtained via robust control synthesis
- Exponential stability criterion: $\dot{V}(x(t)) \leq -\alpha V(x(t)), \forall x \neq 0$

Find: For given *x*, set of actions satisfying exponential stability criterion even in worst case

$$C(x) \equiv \{ u: \left(\sup_{\substack{w: \|w\|_2 \le \|Cx + Du\|_2}} \dot{V}(x) \right) \le -\alpha V(x)$$

$$\Rightarrow \{ u: \|k_1(x) + Du\|_2 \le k_2(x) + k_3(x)^T u \}$$

$$Convex (non-empty) set in u(t)$$

Note: *t*-dependence has been dropped for brevity

Illustrative results: Synthetic NLDI system

Improved "average-case" performance over robust baselines

PSCC2024

Provably stable under "worst-case" dynamics (unlike non-robust baselines)

Downside: Speed / computational cost

Energy-efficient heating and cooling

Goal: Control the HVAC supply water temperature to minimize energy use, while respecting equipment constraints and maintaining thermal comfort

Bingqing Chen^{*}, **Priya L. Donti**^{*}, Kyri Baker, J. Zico Kolter, and Mario Berges. "Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization." *ACM International Conference on Future Energy Systems (ACM e-Energy) 2021.*

Differentiable projection onto feasible actions

Summary: Provably robust control via RL

Motivation: Need for well-performing control methods that also guarantee enforcement of hard constraints

Settings:

- Asymptotic stability in power grids
- Realistic-scale building control

Insight: Project outputs of neural network onto a set of "safe" actions

- Obtain safe actions using domain knowledge
- Differentiable projection (implicit layer) = end-to-end training

Future directions:

- Leveraging more modern control theoretic formulations
- Improving computational costs / scaling to larger systems

Bonus: Adversarial robustness for N-k SCOPF

Overview: Decision-cognizant prediction

Motivation: Predictive methods operate within some larger decision-making process but do not often take this into account, potentially leading to critical mistakes.

Approach: Construct decision-cognizant model using implicit function(s) in objective

Setting: Decision-cognizant electricity demand forecasting

Decision-cognizant demand forecasting

Goal: Optimize for quality of generation schedule when we observe actual demands minimize $f_c(y, z^*(x; \theta))$

Priya L. Donti, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." *Conference on Neural Information Processing Systems (NeurIPS)* 2017.

Decision-cognizant approach can dramatically improve generation scheduling outcomes

Decision-cognizant approach gives ~39% improvement in decision cost.

Name, Title

PSCC2024

PSCC2024

Summary: Decision-cognizant prediction

Motivation: Predictive methods operate within some larger decision-making process but do not often take this into account, potentially leading to critical mistakes.

Setting: Electricity demand forecasting

Insight: Incorporate knowledge of downstream decision-making process into the loss function, using implicit layers (differentiable optimization).

Future directions:

- Incorporating larger / more realistic decision-making procedures
- Extension to additional settings (e.g., end-to-end modeling + control)
- Understanding tradeoffs between decision-cognizant vs. decision-agnostic models

Bonus: Adversarial robustness for N-k SCOPF

PSCC2024

Feasible optimization proxies

Goal: Provide fast, feasible approx. to AC optimal power flow (ACOPF)

Approach:

power demand

Note: Learns directly from problem specification (no training labels)

Priya L. Donti*, David Rolnick*, and J. Zico Kolter. "DC3: A learning method for optimization with hard constraints." *International Conference on Learning Representations (ICLR)* 2021.

Approximating ACOPF: 57-bus test case

	Comparable objective value	Satisfies all (unlike b	l constraints Daselines)	10x faster than IPOPT
	Objective value	Max equality violation	Mean equality violation	Time (s)
IPOPT	3.81 <u>+</u> 0.00	0.00 <u>+</u> 0.00	0.00 <u>+</u> 0.00	0.949 <u>+</u> 0.002
Baseline NN	—	0.19 + 0.01	0.03 <u>+</u> 0.00	
Our approach	3.82 <u>+</u> 0.00	0.00 <u>+</u> 0.00	0.00 <u>+</u> 0.00	0.089 <u>+</u> 0.000

Future directions:

- Larger scale trials (fitting on a GPU)
- Mixed-integer problems (e.g., unit commitment)
- Generalization over topologies (e.g., via GNNs)
- Combinations with frameworks like PDL [PH2023]

[PH2023] Seonho Park, Pascal Van Hentenryck. "Self-Supervised Primal-Dual Learning for Constrained Optimization." AAAI (2023).

Bonus: Adversarial robustness for N-k SCOPF

PSCC2024

Adversarially robust deep learning

Part I: Creating an adversarial example (or ensuring one does not exist)

Slide adapted from: Zico Kolter and Aleksander Madry. "Adversarial Robustness - Theory and Practice." Tutorial at NeurIPS 2018. adversarial-ml-tutorial.org.

Drawing inspiration from adversarially robust DL

Adversarially robust deep learning: Pick neural network parameters to bound the cost of any worst-case perturbation

- Required scalable gradient-based optimization methods

Security-constrained OPF: Pick dispatch to bound the cost of worst-case contingencies

- Leverage similar scalable gradient-based optimization methods?

PSCC2024

N-k security-constrained optimal power flow (SCOPF): Schedule power to be robust to potentially *k* simultaneous generator or line failures (contingencies)

Step 0: Formulate as bilevel (attackerdefender) opt. over dispatch and continuous outer relaxation of contingencies

Step 1 ("attack stage"): Find worst-case contingency via a few steps of projected gradient ascent (with implicit diff.)

Step 2 ("defense stage"): Update dispatch to improve robustness against worst case contingency (e.g., via projected gradient descent or efficient Gauss-Seidel approach)

Priya L. Donti^{*}, Aayushya Agarwal^{*}, Neeraj Vijay Bedmutha, Larry Pileggi, and J. Zico Kolter. "Adversarially Robust Learning for Security-Constrained Optimal Power Flow." *Conference on Neural Information Processing Systems (NeurIPS)* 2021.

Illustrative results (4622-bus system)

3-4x improvement over OPF for N-2/N-3 SCOPF, in only 21 minutes on a laptop

Contingency type	N-1	N-2	N-3
Scenarios tested	6,133	359,712	428,730
OPF violations	59	10,572	4,086
CAN∂Y violations*	36	3,580	1,122

Note: Comparable N-1 SCOPF performance, and superior N-2 and N-3 performance, to ARPA-E GO Competition baselines

See also: Results on stochastic OPF for 11,615-bus system (PSCC 2022)

Bonus: Adversarial robustness for N-k SCOPF

Enablers for next-gen. optimization & control

More openness in data, beyond only bilateral agreements and limited access

- Can include sharing of synthetic data

Simulators and test beds, with realistic/diverse scenarios and easy-to-use interfaces

- Includes digital twins, but also simpler frameworks (e.g., Grid2Op)
- Need for *progression pathways* from basic to advanced simulators/test beds

Evaluation metrics / benchmarks: What does it mean for a method to succeed (or fail)?

Open-source software, enabling integration and evaluation of new methods

Internal research capacity with external exchange: Enables translation of ideas without sharing difficult-to-share information across organizational boundaries

Note: None of these enablers are machine learning-specific!

Implicit layers in deep learning: powerful paradigm for bridging ML with power systems specifications

Going from theory to practice requires deep interdisciplinary **collaboration** and research-todeployment **infrastructure**

Reach out if you'd like to chat, and check out the Climate Change Al network (<u>www.climatechange.ai</u>)

Priya L. Donti: donti@mit.edu

Backup slides

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Image source: Yu, Wang, Majumdar, Rajagopal (2018)

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)

Image source: Open Climate Fix

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)

Image source: L2RPN Challenge

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance

(resilient infrastructure, methane leaks)

Image source: EPRI Journal (2019)

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance

(resilient infrastructure, methane leaks)

Accelerated science

(batteries, solar, electrofuels, fusion)

Image source: Sendek et al. (2020)

Distilling raw data into insights (GHG emissions, solar panels, vegetation)

Forecasting (renewable energy, marginal/average emissions, prices)

Fast and dynamic optimization (power scheduling, MPPT)

Predictive maintenance

(resilient infrastructure, methane leaks)

Accelerated science

(batteries, solar, electrofuels, fusion)

Data management

(data matching/fusion, data generation)

Image source: Chen, Wang, Kirschen, Zhang (2018)

Climate prediction

Tackling Climate Change with Machine Learning

Buildings & cities

data for smart cities

nodeling buildings energy

ptimizing HVAC

....

....

gathering infrastructure data

X

3D building models

Reducing

transportation activity

ew infrastructure (unsustainable)

v infrastructure (sustainable)

existing infrastructure

modeling energy across buildings

David Rolnick^{1*}, Priya L. Donti², Lynn H. Kaack³, Kelly Kochanski⁴, Alexandre Lacoste⁵, Kris Sankaran^{6,7}, Andrew Slavin Ross⁸, Nikola Milojevic-Dupont^{9,10}, Natasha Jaques¹¹, Anna Waldman-Brown¹¹, Alexandra Luccioni^{6,7}, Tegan Maharaj^{6,7}, Evan D. Sherwin², S. Karthik Mukkavilli^{6,7}, Konrad P. Kording¹, Carla Gomes¹², Andrew Y. Ng¹³, Demis Hassabis¹⁴, John C. Platt¹⁵, Felix Creutzig^{9,10}, Jennifer Chayes¹⁶, Yoshua Bengio^{6,7}

¹University of Pennsylvania, ²Carnegie Mellon University, ³ETH Zürich, ⁴University of Colorado Boulder, ⁵Element AI, ⁶Mila, ⁷Université de Montréal, ⁸Harvard University, ⁹Mercator Research Institute on Global Commons and Climate Change, ¹⁰Technische Universität Berlin,

> ¹¹Massachusetts Institute of Technology, ¹²Cornell University, ¹³Stanford University, ¹⁴DeepMind, ¹⁵Google AI, ¹⁶Microsoft Research

Transportation

Vehicle efficiency Designing for efficiency Detecting loading inefficiency 3-D printing Autonomous vehicles

Charging patterns Charge scheduling Congestion management Vehicle-to-grid algorithms

Crisis

readines

Societal adaptation

