Convex Relaxations of Chance Constrained AC Optimal Power Flow

A. Venzke, L. Halilbasic, U. Markovic, G. Hug, S. Chatzivasileiadis

Spyros Chatzivasileiadis
Technical University of Denmark (DTU)
spchatz@elektro.dtu.dk
Why Consider Uncertainty?

Development of redispatch measures in German transmission grid (2016: 31.5 % RES)

Source: Bundesnetzagentur

⇒ New tools necessary for power system operation of AC grids under uncertainty which are able to:
 • anticipate forecast errors to maintain a secure system operation
 • define a-priori suitable corrective control policies

Source: AWEA
Why Convex Relaxations?

- AC optimal power flow problem non-linear & non-convex
 - No guarantee obtained solution is global optimum
 - Distance to global optimum cannot be specified (cost)
- Semidefinite relaxation transforms AC-OPF to convex semi-definite program (SDP)

⇒ Under certain conditions, obtained solution is the global optimum to the original AC-OPF (Zero relaxation gap in work by Lavaei and Low1)

What this paper is about?

• First formulation of a chance-constrained OPF with convex relaxations for meshed transmission grids
 – Convex optimization (SDP) is more robust → OPF based on SDP can solve systems with more than 10,000 buses where AC-OPF fails².
 – Finds the global optimum or, at least, provides a distance measure to the global optimum

• We consider two uncertainty sets
 – Rectangular Uncertainty Set (Randomized and Robust Optimization)
 – Gaussian Uncertainty Set

Randomized and Robust Optimization

- We use a piecewise affine policy which interpolates system state between forecasted system state W_0 and vertices of the uncertainty set W_{1-4}.

- That is, we compute the exact AC-OPF solution at each of the vertices and at the forecasted system state.

- As result of piecewise affine approximation, chance constraints are convex.

- Using robust optimization, it is sufficient to enforce chance constraints at the vertices of the uncertainty set.
• Piecewise affine policy which interpolates system state between forecasted system state W_0 and end-point of the ellipsoid axes of the uncertainty set W_{1-4}
• Consider correlation of the uncertain variables
• Analytical reformulation of the linear chance constraints as SOC constraints
Investigating Relaxation Gap

... for a IEEE 24 bus test system with 2 wind farms and rectangular uncertainty set.

⇒ Near-global optimality guarantee of 99.74%.
Conclusions

• First formulation of a tractable chance constrained AC-OPF using the semidefinite relaxation

• Testing our algorithms to larger case studies and using realistic forecast data

• Current work includes