Data-driven Security Constrained OPF

Spyros Chatzivasileiadis
Associate Professor, DTU
Center for Electric Power and Energy (CEE)

- **Established 15 August 2012** by merging two existing units (Lynbgy + Risø)
 - Among the strongest university centers in Europe with approx. 100 employees

- **Bachelor and Master programs:** Sustainable Energy Design, Electrical Engineering, Wind Energy, Sustainable Energy

- **Direct support from:** Energinet, Siemens, Ørsted (DONG Energy), Danfoss

 DTU consistently ranks among the top 10 universities of the world in Energy Science and Engineering (Shanghai ranking, 2016, 2017, 2018)
Research themes in line with today’s needs

Digital Energy Solutions
- New business models
- Data-driven solutions
- Digital solutions in grids
- System operation tools

Interconnected Energy System
- Multi energy carriers
- Smart energy in cities
- Markets and flexibility
- HVAC/HVDC grids

Optimised Electric Energy Technologies
- Novel equipment concepts
- Electric vehicle integration
- Prosumer solutions
- Cost-effective wind power
Towards a fully controllable system

Enhancing Stability

Market design

Advanced computational methods

Data-driven approaches

Convex approximations for chance-constrained OPF

Convex relaxations and recovery of the global optimum

Data-driven and HVDC Control Methods to Enhance Power System Security

MultiDC
Robust Control for Near-Zero Inertia Systems

MultiDC
Market Integration of HVDC

Data-driven security and optimization of AC and HVDC Grids
Data-Driven Security Constrained OPF

work with:
Lejla Halilbasic, Florian Thams, Andreas Venzke
The feasible space of power system operations

- Nonlinear and nonconvex AC power flow equations
- Component limits
The feasible space of power system operations

- Nonlinear and nonconvex AC power flow equations
- Component limits
 + Stability limits
The feasible space of power system operations

- Nonlinear and nonconvex AC power flow equations
- Component limits
 - Stability limits
- Other security criteria (e.g., N-1)
The feasible space of power system operations

- Nonlinear and nonconvex AC power flow equations
- Component limits
 + Stability limits
 + Other security criteria (e.g., N-1)
 + Uncertainty ξ in nodal power injections
The feasible space of power system operations

- Nonlinear and nonconvex AC power flow equations
- Component limits
 + Stability limits
 + Other security criteria (e.g., N-1)
 + Uncertainty ξ in nodal power injections
The feasible space of power system operations

- Nonlinear and nonconvex AC power flow equations
- Component limits
 - Stability limits
 - Other security criteria (e.g., N-1)
- Uncertainty ξ in nodal power injections
Operational Challenges

- Identifying the boundary of the feasible operating region
- Incorporating the boundary in an optimization framework
- Finding the true optimal solution & maintaining computational efficiency
How to encode **feasible operating region** for electricity markets?

Security considerations live in AC space, but market is based on DC approximations!
How to encode **feasible operating region** for electricity markets?

Security considerations live in AC space, but market is based on DC approximations!

Traditionally, TSOs define Net-Transfer Capacities
How to encode **feasible operating region** for electricity markets?

Security considerations live in AC space, but market is based on DC approximations!

Traditionally, TSOs define **Net-Transfer Capacities**

![Diagram](image-url)
Better but reality of power system operations is nonconvex!

Improvements with Flow-Based Market Coupling but still convex!
What we work on

- **Data** to approximate boundary of N-1 secure and small-signal stable space

- **Mixed Integer Convex Programming** to integrate N-1 & stable space in optimization framework

- **Relaxations and approximations of chance-constrained AC-OPF** to account for uncertainty
We need data!

• We need data that accurately capture the whole security region
 – so that we can successfully use machine learning approaches for classification

• Historical data are insufficient
 – They contain very limited number of abnormal situations

• We need to generate simulation data

• Assessing the stability of 100’000s of operating points is an extremely demanding task
Efficient Database Generation

- Modular and highly efficient algorithm

- Can accommodate numerous definitions of power system security (e.g. N-1, N-k, small-signal stability, voltage stability, transient stability, or a combination of them)

- 10-20 times faster than existing state-of-the-art approaches

- Our use case: N-1 security + small-signal stability

- Generated Database for NESTA 162-bus system online available!

 https://osf.io/5nax8/ (~300,000 points)

Efficient Database Generation: Convex Relaxations and Directed Walks

- Convex relaxations to discard large infeasible regions
 - Certificate: if a point is infeasible for the semidefinite relaxation, it is infeasible for the original problem

1. Sample the search space:
 e.g. from \(P_{g,\text{min}} \) to \(P_{g,\text{max}} \) for all Gens

2. **If** a sample is infeasible:
 Find minimum radius of a (hyper)sphere around that point, that intersects with the feasible space of the semidefinite relaxation

3. Discard all points inside the hypersphere

- Convex optimization! And drastically reducing search space!
Efficient Database Generation: Convex Relaxations and Directed Walks

- “Directed walks”: steepest-descent based algorithm to explore the remaining search space, focusing on the area around the security boundary
 1. Variable step-size
 2. Parallel computation
 3. Steepest descent: sensitivity of damping ratio (small-signal stability)
 4. Exhaustive search of the space around security boundary
 5. Full N-1 contingency check
Results

<table>
<thead>
<tr>
<th>Points close to the security boundary (within distance (\gamma))</th>
<th>IEEE 14-bus</th>
<th>NESTA 162-bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>100% of points in 556.0 min</td>
<td>intractable</td>
</tr>
<tr>
<td>Importance Sampling</td>
<td>100% of points in 37.0 min</td>
<td>901 points in 35.7 hours</td>
</tr>
<tr>
<td>Proposed Method</td>
<td>100% of points in 3.8 min</td>
<td>183’295 points in 37.1 hours</td>
</tr>
</tbody>
</table>

- Further benefits for the decision tree:
 - Higher accuracy
 - Better classification quality (Matthews correlation coefficient)

- Generated Database for NESTA 162-bus system online available! https://osf.io/5nax8/
Data-driven security-constrained OPF

Offline security assessment

Database of stable and unstable OPs \(\{P, Q, V, \theta, \zeta\} \)

Decision Tree

Diagram showing stable and unstable regions in \(x^u \) and \(x_1 \) space.
Data-driven security-constrained OPF

Offline security assessment

Database of stable and unstable OPs \(\{P, Q, V, \theta, \zeta\}\) → Decision Tree

Partitioning the secure operating region
Data-driven security-constrained OPF

Offline security assessment

Database of stable and unstable OPs \{P,Q,V,\theta,\zeta\} \rightarrow \text{Decision Tree}

Partitioning the secure operating region
Data-driven security-constrained OPF

Database of stable and unstable OPs \(\{P, Q, V, \theta, \zeta\} \)

Decision Tree

Offline security assessment

Partitioning the secure operating region
Data-driven security-constrained OPF

Offline security assessment

Database of stable and unstable OPs \{P, Q, V, θ, ζ\}

Decision Tree

Optimization

Integer Programming to incorporate partitions (DT)

- DC-OPF (MILP)
- AC-OPF (MINLP)
- Relaxation (MIQCP, MISOCP)
We gain \(\sim 22\% \) of the feasible space using data and Mixed Integer Programming.
MIP + convex AC-OPF approximation finds better solutions than nonconvex problem!

Optimum located at boundary of considered security region
Works also for DC-OPF (MILP): Market dispatch is N-1 secure and stable

Eliminate redispatching costs

- Redispatching costs: over 400 Million Euros in a year, just for Germany

- Data-driven SC-OPF for markets: DC-OPF becomes MILP
 - But, MILP is already included in market software (e.g. Euphemia, for block offers, etc.)
 - Efficient MILP solvers already existing
Works also for DC-OPF (MILP):
Market dispatch is N-1 secure and stable

Eliminate redispatching costs
OPF under uncertainty

Approximations and relaxations of chance-constrained AC-OPF

<table>
<thead>
<tr>
<th>Semidefinite programming</th>
<th>Second-order cone programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Global optimality</td>
<td>• Ex-post feasibility recovery</td>
</tr>
<tr>
<td></td>
<td>• Computational efficiency</td>
</tr>
<tr>
<td></td>
<td>• Better approximations of confidence region</td>
</tr>
</tbody>
</table>

OPF under uncertainty

Approximations and relaxations of chance-constrained AC-OPF

Second-order cone programming

\[
(I) \quad \tilde{y} = y + \frac{\partial y}{\partial \xi} \xi = Y\xi
\]

\[
\mathbb{P} \left((P_l + Y_l^P \xi)^2 + (Q_l + Y_l^Q \xi)^2 \leq (S_l)^2 \right) \geq 1 - \epsilon
\]

(II)*

1. \(\mathbb{P} \left(|P_l + Y_l^P \xi| \leq k_l^P \right) \geq 1 - \beta_l \epsilon \\
2. \(\mathbb{P} \left(|Q_l + Y_l^Q \xi| \leq k_l^Q \right) \geq 1 - (1 - \beta_l) \epsilon \\
3. \((k_l^P)^2 + (k_l^Q)^2 \leq (S_l)^2 \\

\beta_l \in (0,1) ensures \(\mathbb{P}((1) \cup (2)) \geq 1 - \epsilon \\

Convex AC-OPF approximation + separation of quadratic chance constraint finds better solutions than nonconvex problem!

Lower-cost region, where nonconvex CC-AC-OPF is more expensive!

Boundary of confidence region
Conclusions

• Framework for the tractable reformulation of security and uncertainty considerations, which ...

... can be included in any optimization problem ...

... and leverages data analytics and convex relaxations & approximations to make larger regions of the feasible space accessible, while remaining computationally efficient
Interested in a PhD?

- Open position

- Topic: **Data-driven Security and Optimization for AC and HVDC Grids**

- Contact: spchatz@elektro.dtu.dk

- Deadline: December 15, 2018
Thank you!

www.chatziva.com/publications
spchatz@elektro.dtu.dk

References:

