

SEPOPE 2012

Security-Constrained Optimal Power Flow including Post-Contingency Control of VSC-HVDC lines

Spyros Chatzivasileiadis, Thilo Krause and Göran Andersson

ETH Zürich

IRENE-40 European Project

 Infrastructure Roadmap for the Energy Networks in Europe for the next 40 years

www.irene-40.eu

- Partners:
 - 5 European Universities: RWTH Aachen, Imperial College, Delft, NTUA, ETH Zurich
 - ABB, Siemens, Alstom, Energy Center of the Netherlands

IRENE-40

- Identify expansion measures with respect to:
 - Sustainability → more RES
 Security
 - Competitiveness → efficient market operation

- Possible Options:
 - AC Lines, FACTS devices, <u>HVDC lines</u>, regulatory measures, etc.

"Cost of Security" Index

- The "Cost of Security" represents the additional generation dispatch costs, in order to satisfy the N-1 criterion.
- Compare the total generation costs resulting from a Security-Constrained Optimal Power Flow (SC-OPF) and from a standard AC Optimal Power Flow (AC-OPF)
- Cost of Security =

Gen.Costs (SC-OPF) – Gen.Costs (AC-OPF)

Goal: find the *least* "Cost of Security"

Motivation

VSC-HVDC lines can act fast and actively relieve line overloadings after a contingency

Therefore:

We need a Security-Constrained OPF,

which takes into account the increased control capabilities of

the VSC-HVDC lines after a contingency.

*VSC: Voltage-Source Converter technology

OUTLINE

- 1. Method
- 2. Case Studies
 - Operation: 10-bus network
 - Planning: European Network
- 3. Conclusions

Proposed Security-Constrained OPF (SC-OPF)

- The proposed SC-OPF is based on the current injection method for the calculation of the line currents in case of a line outage.
- 1. Standard AC-OPF
- 2. Model for VSC-HVDC lines
- 3. Current Injection Method
- 4. Extension for VSC-HVDC Post-Contingency Control
- 5. Extension for increased accuracy

Current Injection

Virtual injection currents eliminate the flow on the outaged line

post-fault

$$\underline{V}_F = \underline{Z}_0 \cdot (\underline{I}_F + \underline{I}_S)$$

Change in line flows

$$\Delta \underline{I}_{line} = \underline{Y}_{L} \cdot \Delta \underline{V} = D \cdot \underline{I}_{S}$$

Main Assumption:

Bus injections before the outage e.g. gens, loads

$$\underline{I}_0 = \underline{I}_F$$

Bus injections *after* the outage e.g. gens, loads

HVDC for post-contingency control

If an HVDC "participates" during the outages:

$$\underline{I}_{0,\mathrm{HVDC}} \neq \underline{I}_{F,\mathrm{HVDC}}$$

Bus Current Injections at HVDC nodes are no longer zero

HVDC for post-contingency control

- With VSC-HVDC, we can control:
 - The active power flow, in order to relieve overloadings on other lines (one additional optimization variable)
 - The reactive power flow, in order to keep the voltage at the HVDC buses to a pre-determined setpoint

Extension for increased accuracy

• In reality: pre-fault $\underline{I}_0 \neq \underline{I}_F$ post-fault $\underline{I}_T = \begin{bmatrix} \underline{I}_{T_1} \\ \underline{I}_{T_2} \\ \vdots \\ \underline{I}_{T_i} \\ \vdots \\ \underline{I}_T \end{bmatrix}$ for all buses.

• We assume an additional current I_{T_i} for each bus, so that:

- P and Q remain constant at PQ buses
- P and V remain constant at PV buses
- V and δ remain constant at slack buses

(extension proposed by Hug, Andersson, PSCC 2008)

SC-OPF Wrap-up

- Determine the injection currents \underline{I}_S , \underline{I}_T
- Calculate the line flows after the fault

 $\underline{I}_{line,post-fault} = \underline{I}_{line,0} + D \cdot \left(\underline{I}_{S} + \underline{I}_{T}\right)$

- Include them in the constraints
- Additional constraints of the AC-OPF
- Additional constraints for the HVDC model

OUTLINE

- 1. Method
- 2. Case Studies
 - Operation: 10-bus network
 - Planning: European Network
- 3. Conclusions

Bus Voltages pre-fault vs. post-fault

Post-Fault Line Flows: Current Injection vs. AC power flow

Case Study #2 (planning): European Network

- 32 nodes, 104
 branches, ~100
 generators
- Generation Scenario: 80% RES in 2050
- SC-OPF: 12 most critical outages
- Addition of: 3 HVDC+1 AC

Case #2: Cost of Security with post-contingency control [PCC]

	No Expansion	Addition of 1 AC + 3 HVDC lines
Standard AC-OPF	9.52 million €/h	9.50 million €/h
SC-OPF with PCC	10.61 million €/h	10.52 million €/h
Cost of Security	1.09 million €/h	1.02 million €/h
Reduction in Cost of Security	6.4%	
Cost of Security: Additional	~300-600 million Euros per ye can be saved	

Cost of Security: Additional generator re-dispatch costs, so that the N-1 criterion can be satisfied

Case #2: Cost of Security with and without PCC

	Cost of Security	Reduction in Cost of Security
No expansion	1.09 million €⁄h	
Expansion without PCC	1.08 million €⁄h	1 %
Expansion with PCC	1.02 million €/h	6.4 %

*PCC = Post-contingency control

Conclusions

- Algorithm which integrates in a single optimization problem:
 - a Security-Constrained OPF including VSC-HVDC lines, and
 - calculates the control actions of multiple VSC-HVDC lines after line outages (post-contingency control)
- The control capabilities of the VSC-HVDC lines have the potential to significantly decrease the "Cost of Security".

Obrigado!

www.irene-40.eu

