Remedial Actions to Enhance Stability of Low-Inertia Systems

Spyros Chatzivasileiadis
Technical University of Denmark (DTU)
Center for Electric Power and Energy
Email: spchatz@elektro.dtu.dk

Thanh Long Vu
Massachusetts Institute of Technology
Mechanical Engineering
Email: longvu@mit.edu

Konstantin Turitsyn
Massachusetts Institute of Technology
Mechanical Engineering
Email: turitsyn@mit.edu

Goal #1: Enhance transient stability of low-inertia systems through inertia and damping control

- Low inertia systems are more prone to instability.
- Increasing inertia and damping control during the fault-on dynamics increases the region of attraction.
- Synthetic inertia and damping can be provided by external sources.

Goal #2: Use a simulation-free approach

- Stability certificates: tractable sufficient conditions
- Strategy: certify security of most of scenarios with conservative conditions, use simulations for few really dangerous scenarios

Example: Energy Function

\[E = \frac{1}{2} \omega^T M \omega + \sum \delta_i \cos \delta_i - \sum P_i \]

Contributions

- Exact reformulation to relax the LMI condition
- Optimal tuning of inertia and damping
- Problem is bilinear: Find \((m,d) \)
- Robust: independent of the operating point (within bounds)
- Convex: quadratic functions
- Less conservative potentially: it's a family of Lyapunov functions
- Introduced exact reformulation to relax the problem and obtain better results
- Incorporated remedial actions:
 - Use of external power sources to mimic inertia and damping
 - Simulation-free stability guarantees for a larger set of faults
 - Low energy and power requirements: external sources act only during fault-on dynamics

Conclusions

- Presented stability and resiliency certificates that are:
 - Robust: independent of the operating point (within bounds)
 - Convex: quadratic functions
 - Less conservative potentially: it's a family of Lyapunov functions

Reference:

This work was partially supported by NSF, MIT/Skolkovo, Masdar initiatives and Ministry of Education and Science of Russian Federation, Grant Agreement no. 14.515.21.0001.